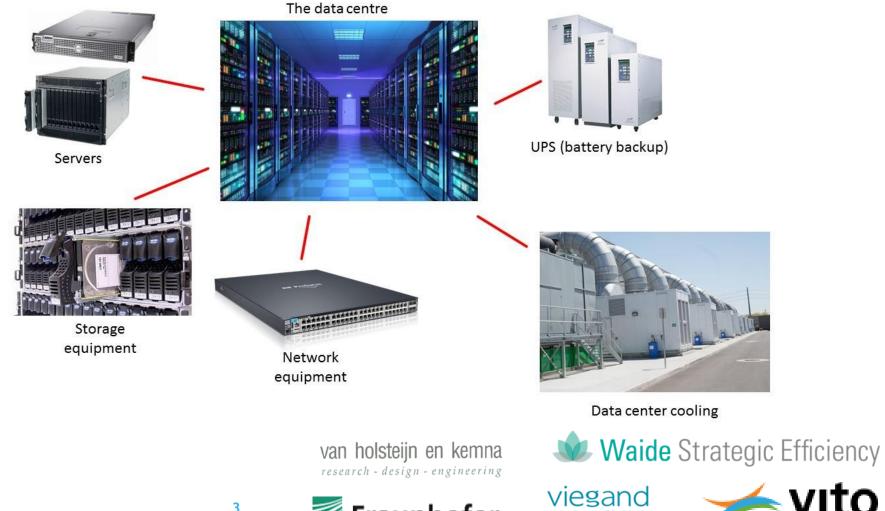


🕪 Waide Strategic Efficiency

van holsteijn en kemna research - design - engineering

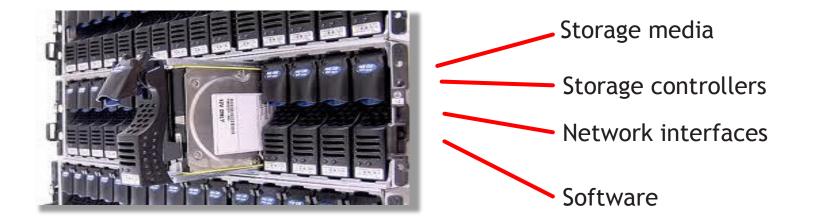


PRESENTATION OF DRAFT TASK 4 REPORT - CASE STUDY OF GENERIC POINTS METHODOLOGY APPLIED TO DATA STORAGE PRODUCTS

Jan Viegand, 10/03/2017

INTRODUCTI		
» Aim: Apply	European Commission	ecific product
» 1: Test		
» 2: Asses	the assessment of the feasibility of using "points system"	storage products
» Data stora	methods in the implementation of Ecodesign Directive	ficult to apply
theory on	(2009/125/EC)	
	TASK 4 Case study: Data Storage Systems	
» Many itera		
	Draft report v1	
» Large tech		ert
	12 February 2017	ide Strategic Efficiency
		vito 🦟
» Large tech	12 February 2017	

The Data Centre



maagøe

energy people

The Data Storage Product

Scope: Online 2, 3, 4: Typical enterprise and data centre storage

van holsteijn en kemna research - design - engineering

viegand

eneray people

maag

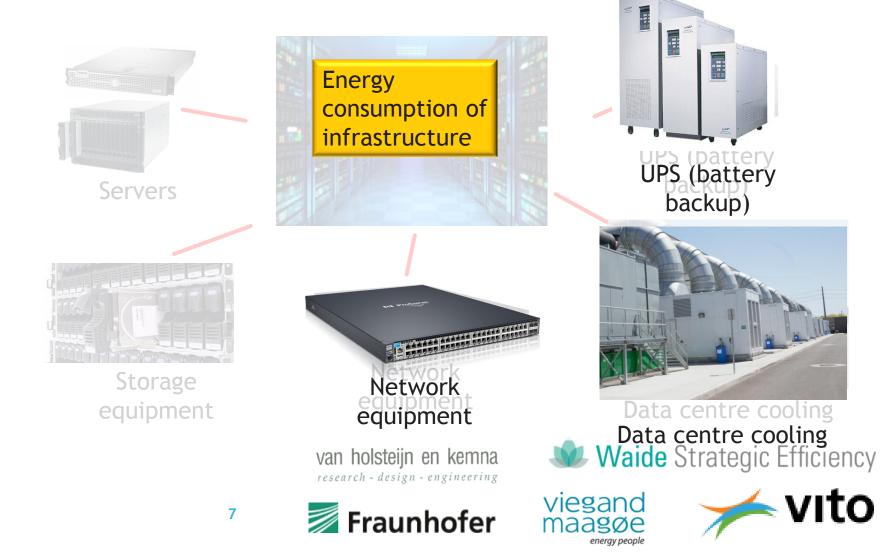
4

Environmental impact of data storage

5

🥣 🗡 🗡

viegand


maagøe

energy people

Environmental impact of data storage products

Environmental impact of data storage products

Environmental impact

- » In-use electricity consumption:
 - » Now: 15 TWh/year (incl. infrastructure 27 TWh/year)
 - » 2030: 30 TWh/year (incl. infrastructure 47 TWh/year)
- » Material environmental impact

van holsteijn en kemna research - design - engineering

WHY DATA STORAGE PRODUCTS FOR POINTS SYSTEM

- » Mix of quantifiable and qualitative product ecodesign features smaller and larger
- » Difficult to translate each ecodesign feature into regulation
- » Complex to apply a rigorous performance assessment method
- » Point system to provide a compromise for an improved eco-design product

van holsteijn en kemna research - design - engineering

DG GROW Lot 9 - Enterprise servers, data storage and ancillary equipment - Potential ecodesign requirements

- » PSU efficiency and power factor
- » Material efficiency
- » Operation Condition Class

van holsteijn en kemna research - design - engineering

DG GROW Lot 9 - Enterprise servers, data storage and ancillary equipment - Potential ecodesign requirements

- » PSU efficiency and power factor
 - » Requirements: Min. efficiency at 20%, 50%, 100 % & min. PW
 - » Information: Eff. at 10%, 20%, 50%, 100% & PW
- » Material efficiency
- » Operation Condition Class

van holsteijn en kemna research - design - engineering

DG GROW Lot 9 - Enterprise servers, data storage and ancillary equipment - Potential ecodesign requirements

- » PSU efficiency and power factor
- » Material efficiency
 - » Requirement:
 - » Joining or sealing technique
 - » Documenting the sequence of dismantling operations
 - » Built-in software based data deletion tool(s)
 - » Latest version of firmware available
 - » Information
 - » Disassembly, recycling and disposal at end-of-life
 - » Instructions on how to remove components
 - » The data deletions tool(s)
 - » The latest firmware version
 - » Weight and where of 3 critical raw materials
- » Operation Condition Class

van holsteijn en kemna research - design - engineering

DG GROW Lot 9 - Enterprise servers, data storage and ancillary equipment - Potential ecodesign requirements

- » PSU efficiency and power factor
- » Material efficiency
- » Operation Condition Class
 - » Information: A1-A4 (temperature, humidity etc. intervals)

ENERGY STAR

Data Centre Storage v1.0, March 2014 (not adopted EU)

- » Power supply (efficiency & power factor)
- » Power modelling presale tool (selected systems)
- » Energy efficiency feature:
 - » Adaptive active cooling
 - » For online 3 and 4 products, at least 1 COM (Capacity Optimizing Method)
- » Information Reporting (technical data, test data, EE performance)
- » Performance data measurement & output

14

van holsteijn en kemna research - design - engineering

SNIA Green Storage Initiative

15

- » Storage Networking Industry Association
- » SNIA Emerald[™] Program (test energy & performance)
- » Developed in collaboration with ENERGY STAR

van holsteijn en kemna research - design - engineering

ASHRAE thermal guidelines for data centers

Thermal classes (+ humidity etc.)

- » A1: 15-32 °C
- » A2: 10-35 °C
- » A3: 5-40 °C
- » A4: 5-45 °C
- » Data on reliability, energy consumption, noise vs temp.
- » Less restrictions, more free cooling, reduced energy cons.

van holsteijn en kemna research - design - engineering

This is an illustrative case study - not final proposal

- » Used existing limited data for Data Storage
- » We have made assumptions

17

- » We propose weightings... based on judgements
- » We present briefly the methodology
 there are many details
- » We had limited resources, but we have a result for discussions

van holsteijn en kemna research - design - engineering

Target

- » Award points to the product relative to a reference product
- » Based on calculation of environmental impact budget for the product
- » Points can be used for regulation

18

van holsteijn en kemna research - design - engineering

Step 1 Assessment of key lifecycle stages

- » In-use electricity consumption for the storage system
- » In-use electricity consumption for DC (cooling, UPS, network equipment and power distribution units)
- » Material for the production and the production processes
- » End-of-life treatment

19

van holsteijn en kemna research - design - engineering

Step 2 Assessment of product scope boundaries and associated impacts at the wider (extended product or product-system) level

- » Extended product
 - » Varying loads on the data storage directly related to usage pattern
- » Product-system
 - » Impact on the DC (cooling, UPS, network equipment and power distribution units)

Step 3 Selection of environmental impact criteria Step 4 Determination of the phases at which product design may influence lifecycle impacts

Most important criteria:

- » Electricity consumption during the use phase on the product system level
- » Material efficiency are the most important environmental impact criteria the points-system should target

Step 5 Assessment of whether a points system approach is potentially merited or not

- » Q: Mix of quantifiable (cardinal) and more qualitative product ecodesign features?
- » A: Yes. E.g. energy performance & minimum operating condition
- » Q: Difficult to determine the relative importance of benefit of ecodesign features?
- » A: For some of the features yes such as min. oper. condition
- » Q: Performance assessment method too complex, but a points-based system could provide compromising requirements?
- » A: DS systems are complex and difficult to test for all use patterns. Points-system may be a way forward

van holsteijn en kemna research - design - engineering

Step 6 Assessment of the implications of product modularity

- » Mainly size and configuration
- » For size modularity, points to be allocated for modules

van holsteijn en kemna research - design - engineering

Step 7 Assessment of the implications of product performance sensitivity to the final application

- » Main application: Store and retrieve data
- » Main sub-category applications (DS optimised for these):
 - » Transactional applications: Most common: Small, random data transactions. E.g. databases, web servers
 - » Streaming applications: Reading and writing large files and blocks of data in sequence. E.g. backup/recovery, streaming media files
 - » Capacity applications: Store very large amount of data. E.g. less accessed backup etc.
- » Different applications and different performance definitions and measurement methods

van holsteijn en kemna research - design - engineering

Step 7 Assessment of the implications of product performance sensitivity to the final application

- » Transactional applications
- » Streaming applications
- » Capacity applications

van holsteijn en kemna research - design - engineering

ENERGY STAR Data

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р	Q	R	S	Т
1	ENERGY S	ENERGY S	Brand Nar	n Model Na	r Model Nu	r Additional	Storage M	Product T	y Physical D	Storage C	Storage C	c Storage Co	Storage Co	c Storage (Cc Capacity C	Workload	Qualificati	Automate	Automate	Software (
2	2206733	Dell Inc.	DELL	PS4110XV	E04J		Block I/O	Online 3	Yes	Scale-Out	Dell Equa	ll Yellow-Mc	Module 17	7 RAID	Delta Snap	Transactio	Fixed Size	Yes	No	EQL Real-1
3	2210329	Dell Inc.	DELL	PowerVau	E03J	PowerVau	Block I/O	Online 3	No	Scale-Up S	Dell	Dell MD38	DPN 0XC	RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
4	2210347	Dell Inc.	DELL	PowerVau	E04J	PowerVau	Block I/O	Online 3	No	Scale-Up S	5 Dell	MD38 Seri	DPN 09J1)	RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
5	2210381	Dell Inc.	DELL	PowerVau	E08J	,E08J,	Block I/O	Online 3	No	Scale-Up S	6 Dell	MD38 Seri	DPN 0T46	RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
6	2210382	Dell Inc.	DELL	PowerVau	E08J	,E08J,	Block I/O	Online 3	No	Scale-Up S	5 Dell	MD38 Seri	DPN 014Y	4 RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
7	2212683	Dell Inc.	DELL	SC8000SC	E14S		Block I/O	Online 3	No	Scale-Up S	5 Dell	Compellen	SC8000	RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
8	2212733		DELL	SC8000SC	E14S	SC8000SC2	Block I/O	Online 3	No	Scale-Up S	5 Dell	Compellen	SC8000	RAID	Delta Snap	Transactio	Fixed Size	No	No	EQL Real-1
9	2231227	Dell Inc.	DELL	PS4210E	E03J		Platel/O	Online 3	Yes	Scale-Out	Dell Equa	ll Mod <mark>ri</mark> e 19	Module 19	9 RAID	Delta Snap	Transactio	Fixed Size	Yes	No	EQL Real-1
10	2238819	Dell Inc.	DELL	PS6610XS	E11J		Block O	/ vine 3	Yes	Scale-Out	Dell Equa	Il Mode e 19	Module 18	9 DAID	Delta Snar Delta Snar Delta Snar Delta Snar	Transactio	Fixed Size	Yes	No	EQL Real-1
11	2238908		DELL	SCv2000	E09J		Bloc //O	ann 4	No	ca -Up s	ell	1G-is SI-	1G-i CS	RAID	De la Snap	Transactio	Fixed Size	No	No	Storage Ce
12	2239321		DELL	SCv2020	E10J		BV .k I/O	Inlin 4	No	ca -Up S	lell	10G- CS	106 SC	RAID	Delta Si ap	Transactio	Fixed Size	No	No	Storage Ce
13	2239322		DELL	SCv2080	E11J	-	BIOCK IT O	Onme 4	No			100-ISCSI-	10G-ISCSI	MAID	Dente onap	Transactio	Fixed Size	No	No	Storage Ce
14	2241233		DELL	SC4020	E10J		Block I/O	Online 4	No	Scale-Up S		10G-iSCSI-				Transactio			Yes	Storage Ce
15	2252091		DELL	SC9000	E31S		Block I/O	Online 3	Yes	Scale-Up S	Dell Com	Dell Comp	Compeller	n RAID	Delta Snap	Transactio	Fixed Size	Yes	No	EQL Real-1
16	2283534		DELL	SC7020 wi	/		Bloc	Onli	Ye	Scale-U	Je	Dell SC 02	Dell SC7	2 RAID		Transactio			No	EQL Real-1
17	2283545		DELL			J SC7020 wi	Block I/O	Onl. > 3	Y	Scale-	Deï	U Module 19	Della 2			Transactio			No	EQL Real-1
18	2231228		DELL	PS4210X			Block I/	Onl' e 5	Yes	Scale-C t	Del Eq	ule 19	N bdule .9	91, 10		Transactio			No	EQL Real-1
19	2231233		DELL	PS4210XS			Block O	On te 3	Yes	Scale-C t	Del Equ	Module 19	N dule 9	9 RAID		Transactio			No	EQL Real-1
20	2231234		DELL	PS4210XV			Block I/O		Yes	Scale-Out	Dell'Equa	ii wouule 15	Mouule 1:	SKAID		Transactio			No	EQL Real-1
21	2231235		DELL	PS4210XV			Block I/O		Yes			ll Module 19				Transactio			No	EQL Real-1
22	2238813		DELL		E11J		Block I/O		Yes			II Module 18				Transactio			No	EQL Real-1
23	2238816		DELL		E11J		Block I/O		Yes			II Module 18				Transactio			No	EQL Real-1
24	2238817		DELL		E11J		Block I/O		Yes			Il Module 18				Transactio			No	EQL Real-1
25	2238818		DELL		E11J		Block I/O		Yes			II Module 18				Transactio			No	EQL Real-1
26	2205661		DELL	PS4100	E04J		Block I/O		Yes			ll Purple-Mo				Transactio			No	EQL Real-1
27	2205667	Dell Inc.	DELL	PS4100X	E04J		Block I/O	Online 3	Yes	Scale-Out	Dell Equa	ll Purple-Mo	Module 12	2 RAID	Delta Snap	Transactio	Fixed Size	Yes	No	EQL Real-1

van holsteijn en kemna research - design - engineering

Waide Strategic Efficiency

viegand

maagøe

energy people

ENERGY STAR Data

	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	Ο	Р	Q	R	S	Т
1	ENERGY S	ENERGY	STBrand Na	n Model Nar M	1odel Nur <i>l</i>	Additional	Storage N	1 Product	Ty Physica	al DaStorage C	c Storage	Cc Storage C	Storage (Cc Storage	Cc Capacity (Workload	Qualificat	Automate	Automate	e Software (
2	206733	Dell	66		04J	ата	Block	asi	n ar	Sale-Out	Dell Equ	all Yellow-M	Module 1	L7 RAID	Delta Sna	p Transactic	Fixed Size	Yes	No	EQL Real-1
3	2210329	Dell mc.	DELL	PowerVaure	03J	rowerVau	Block I/O	Online 3	No	Sale-Up	S Dell	Dell MD38	B DPN OXC	V RAID	Delta Sna	p Transactic	Fixed Size	No	No	EQL Real-1
4	2210347	Dell Inc.	DELL	PowerVau E	04J I	PowerVau	Block I/O	Online 3	No	Scale-Up	S Dell	MD38 Ser			Delta Sna	o Transactic	Fixed Size	No	No	EQL Real-1
5	2210381	Dell nc.	54-2	PowerVer	²]	508	Plock I/r	Caline	No	Falsur	Dell	MD28 Ser	DPN 074	SI RAID	Delta ner	Transactic	E xed Size	ro		EDL Beal-1
6	2210382	Dell 🗠	alc	Powe	81,					Cale-Vp	Dell	WI 38 Y r	i DPD 0 4				🗏 xed 🗤	No	JUL	EU, bal-1
7	2212683	Dell Inc.	DELL	SC8000SC2E	14S		Block I/O	Online 3	No	Scale-Up	S Dell	Compeller	1 SC8000	RAID	Delta Sna	Transactio	Fixed Size	No	NO	LQL Near I
8	2212733	Delling	/itr	SCENSI S	7h	ne	rtc	rn	ובר	nce	ar	hpelle	170	AID	NTIC	Ansactic	Fixed Size	No	No	EQL Real-1
9	2231227	Dell IVc.		PS421EE C	2	PC							-5	BHAID			Fixed Size	Yes	No	EQL Real-1
10	2238819	Dell Inc.	DELL	PS6610XS E	11]		BIOCK I/O	Online 3	Yes	Scale-Out	Dell Equ	all Module 18	Nodule 1		Delta Snaj	o I ransactio	Fixed Size	Yes	No	EQL Real-1
11	2238908	Dell Inc.	DELL	SCV2000 •E			BIOCK I/C	Pini ie 4		Scale-Up		IG-ISCSI-2			Delta Sha	a Iransactio	Fixed Size	No	No	Storage Ce
12	2220222	Dell Inc.	RELL			ЛУ	Plock I/O	Online 4		Cas					Dolta Spar	Transactio	Fixed Size	No	No	Storage Ce Storage Ce
																	Fixed Size	Ves		Storage Ce
14	2241233	Dell nc.	DELL	509020	315	10	OKck I/	Online 4	NO CONTRACTOR	Scale-Op.		Tod-isesi			Delta Sha	Transactic	Tivel in a	Mas -		EQL Real-1
16	2283534	Dell	XCI				10	112			l a f			R 2						EQL Real-1
17	2283545	Dell Inc.	DELL	SC7020 wi E	03T. E031	SC7020 wi	Block I/O	Online 3	Yes	Scale-Up	Dell	Dell SC702	Poll SC70	2 RAID	Delta Snar	Transactio	Fixed Size	Yes	No	EQL Real-1
18	2231228	Dell	31//	SC7020 wi El PS42 PS42 LOSS E	ord				or			Monuela	Vi idur- 1		Delta Sna	Transactio	Fixed Size	Yes	No	EQL Real-1
19	2231233	Dell mc.	avt	PS421075 E			5.0	On the S		ILAL	Del Equ		149		Selta Sna	, Transactic	Fixed Size	Yes	No	EQL Real-1
20	2231234	Dell Inc.	DELL	PS4210XV E	03J		Block I/O	Online 3	Yes	Scale-Out	Dell Equ	all Module 19	Module 1	L9 RAID	Delta Sna	Transactio	Fixed Size	Yes	No	EQL Real-1
21	2231235	Dell Inc.	DEL	PS4210XV: E)3J	- 4 -	Block I/O	Or line 3	Yes	Scale-Out	Dell Equ	all Module 19	Module 1	L9 RAID	Delta Sna	Transactio	Fixed Size	Yes	No	EQL Real-1
22	1238813	Dell nc.	DEL 👤		11	a la	Block (Or line 3		Scale-Out	Dell Equ	all Module 18	Module 1	L8 RAID	Delta Snaj	Transactic	Fixed Size	Yes	No	EQL Real-1
23												all Module 18				Transactio	Fixed Size	Yes	No	EQL Real-1
24	2238817	Dell Inc.	DELL	PS6610X E	11J		Block I/O	Online 3	Yes	Scale-Out	Dell Equ	all Module 18	Module 1	L8 RAID	Delta Sna	Transactio	Fixed Size	Yes	No	EQL Real-1
25	2238818	Dell nc.	ata	PS6610X E PS6 SCE E	Γρ	YC	Block I/O	O line 3	1	hid	10	al rodu 🕰	Pr	RAID) MA	mansactic	Files Size	Yes	No	EQL Real-1
26	2205661	Dell me.		PS4100 E		AC	Blæk I/O	Online 3	YUS	18454	Den Equ	at Furple and	Module 1	R, R, R	Delta Jua	manactic	Fixed Size	Yes	No	EQL Real-1
27	2205667	Dell Inc.	DELL	PS4100X E	04J		Block I/O	Online 3	Yes	Scale-Out	Dell Equ	all Purple-Mo	Module 1	L2 RAID	Delta Sna	Transactic	Fixed Size	Yes	No	EQL Real-1

van holsteijn en kemna research - design - engineering

Waide Strategic Efficiency

viegand

maagøe

energy people

Step 8 Determination of environmental impact budgets

Included:

- 1. Energy performance of the product
- 2. Energy efficiency feature COMs
- 3. Energy efficiency feature Minimum operating condition
- 4. Energy efficiency feature Good Commissioning Guidance

Not included:

- » Power supply efficiency (proposed Lot 9)
- » Power modelling presale tool available (typical)
- » Energy efficiency feature Adaptive active cooling (standard)
- » Material efficiency (proposed Lot 9)

van holsteijn en kemna research - design - engineering

Step 8 Determination of environmental impact budgets Step 9 Normalisation and awarding of points

- 1. For each application (transactional, streaming, capacity)
- 2. Results of each workload test are weighted to total performance
- 3. Adjusted for EE features (COMs, oper. cond., commissioning)
- 4. Inverted figures to correspond to index
- 5. Normalisation (reference: EEI = 100 %)
- 6. Points (EEI = 100% > 0 points)
- 7. All above for excl. 10 % highest performing products (assumed to be cost-ineffective)

van holsteijn en kemna research - design - engineering

Step 8 Determination of environmental impact budgets

- Energy performance
- » Reference case (average energy performance)
- » Ecodesign option 1 optimised for hot band performance (transactional applications)
- » Ecodesign option 2 optimised for sequential read performance (streaming applications)
- » Ecodesign option 3 optimised for sequential write performance (streaming applications)
- » Ecodesign option 4 optimised for ready idle performance (all applications)
- » Ecodesign option 5 (BAT) highest overall performance
- » Calculation of total performance (our weightings)
 - 1. Transactional
 - 2. Streaming
 - 3. Capacity

van holsteijn en kemna research - design - engineering

Workload test

- » Transactional applications:
 - » Hot band workload test IOPS/W
 - » Ready idle capacity GB/W
- » Streaming applications
 - » Sequential read workload test MiBPS/W
 - » Sequential write workload test MiBPS/W
 - » Ready idle capacity GB/W
- » Capacity applications
 - » Ready idle capacity GB/W

IOPS = input output operations per second MiBPS = 1,048,576 bytes per second

viegano

van holsteijn en kemna research - design - engineering

Workload test weighting

	Hot band	Seq read	Seq write	Ready Idle
	workload test	workload test	workload test	workload test
	IOPS/W	MiBPS/W	MiBPS/W	GB/W
Transactional applications	37.5%	0%	0%	62.5%
Streaming applications	0%	22%	11%	67%
Capacity applications	0%	0%	0%	100%

IOPS = input output operations per second MiBPS = 1,048,576 bytes per second

viegand

energy people

maag

van holsteijn en kemna research - design - engineering

Calculation of energy budget

Transactional Applications								
	Hot band workload test (IOPS/W)	Seq read workload test (MiBPS/W)	Seq write work- load test (MiBPS/W)	Readly idle capaci- ty workload test (GB/W)	Total performance			
Reference case	6.6			97.1	63.2			
	e: 6.6 IOPS	/W (hotban	d) + 97.1 G	B/W (ready	y idle)			
	x 6.6 + 62.	5% x 97.1 =	63.2	54.5	117.5			
(BAT Seq read workload test)			00.2		n/a			
E Hot band	workload t	est: 1 IOPS	/W corresp	onds to 1 p	oint			
Ready idl	e capacity	workload to	est: 1 GB/V	V correspor	nds to/1			
(B4 point ile workload test)	8.4			588.1	370.7			
Ecodesign option 5a (BAT Total Perfor-								
mance Score)	8.4			588.1	370.7			
³³ Fraunhofer viegand viegand								

energy people

Step 8 Determination of environmental impact budgets - Energy efficiency feature - COMs

- » COMs: Deduplication, thin provisioning, delta snapshots, compression (all assumed applied)
- » Increase capacity for same raw capacity = same power consumption > improves ready idle performance
- » Improvement of eco-design options 1-5 (estimated):
 - 1. Transactional: 40% (like cap., but also I/O)
 - 2. Streaming: 17% (often incompr. data)
 - 3. Capacity: 45% (largest optimisation, cap. only output factor)

Energy budget with COMs

Transactiona	I Applications	\$,
					,
	Hot band workload test (IOPS/W)	Seq read workload test (MiBPS/W)	Seq write work- load test (MiBPS/W)	Readly idle capaci- ty workload test (GB/W)	Total performance
Reference case	6.6			97.1	63.2
Ecodesign option 1a (BAT Hot band					
workload test)	157.0			94.5	117.9
Ecodesign option 2a (BAT Seq read workload test)					n/a
Ecodesign option 3a (BAT Seq write					
workload test)	 '				n/a
Ecodesign option 4a (BAT Ready Idle					
workload test)	8.4			588.1	370.7
Ecodesign option 5a (BAT Total Perfor-					
mance Score)	8.4			588.1	370.7
Ecodesign option 6a (case 5a including					
COMS)	8.4			823.3	517.7

Energy budget with COMs - Inverted

Transactional Applications							
	Total performance	Inverted total performance					
Reference case	63.2	0.01583					
Ecodesign option 1a (BAT Hot band workload test)	117.9	0.00848					
Ecodesign option 2a (BAT Seq read workload test)	n/a	n/a					
Ecodesign option 3a (BAT Seq write workload test)	n/a	n/a					
Ecodesign option 4a (BAT Ready Idle workload							
test)	370.7	0.00270					
Ecodesign option 5a (BAT Total Performance							
Score)	370.7	0.00270					
Ecodesign option 6a (case 5a including COMS)	517.7	0.00193					

van holsteijn en kemna

research - design - engineering

viegand

energy people

maago

Step 8 Determination of environmental impact budgets

- Energy efficiency feature Minimum operating condition
- » Technical improvement of data storage

37

- » Wider range of temperature and humidity
- » > More free cooling less mechanical cooling
- » Average reduction 4 %

van holsteijn en kemna research - design - engineering

Energy budget incl. power and cooling

Transactional Applications (excl. to			
	Product perfor- mance	Power and cooling performance	Combined total (sum of the values of prod perf + pow. and cool perf)
Reference case	0.01583	0.01055	0.02639
Ecodesign option 1b (BAT Hot band workload test)	0.02306	0.01537	0.03843
Ecodesign option 2b (BAT Seq read workload test)	n/a	n/a	n/a
Ecodesign option 3b (BAT Seq write workload test)	n/a	n/a	n/a
Ecodesign option 4b (BAT Ready Idle workload test)	0.00949	0.00633	0.01581
Ecodesign option 5b (BAT Total Performance Score)	0.00994	0.00663	0.01657
Ecodesign option 6b (case 5b including COMS)	0.00725	0.00483	0.01208
Ecodesign option 7b (case 6b but with higher Minimum Operating Condition)	0.00725	0.00464	0.01189

Step 8 Determination of environmental impact budgets

- Energy efficiency feature Good Commissioning Guidance
- » Estimated 3 % improvement

van holsteijn en kemna research - design - engineering

Energy budget incl. good commissioning guidance

Transactional Applications (excl. top 10%)	
	Energy
Reference case	0.02639
Ecodesign option 1b (BAT Hot band workload test)	0.03843
Ecodesign option 2b (BAT Seq read workload test)	n/a
Ecodesign option 3b (BAT Seq write workload test)	n/a
Ecodesign option 4b (BAT Ready Idle workload test)	0.01581
Ecodesign option 5b (BAT Total Performance Score)	0.01657
Ecodesign option 6b (case 5b including COMS)	0.01208
Ecodesign option 7b (case 6b but with higher Minimum Operating	
Condition)	0.01189
Ecodesign option 8b (case 7b but with good commissioning guid-	
ance)	0.01153

van holsteijn en kemna research - design - engineering

viegand

energy people

maag

Normalisation and points - Results

Transactional Applications (excl. top 10%)		
	EEI	Points
Reference case	100%	0
Ecodesign option 1b (BAT Hot band workload test)	146%	-45.7
Ecodesign option 2b (BAT Seq read workload test)	n/a	n/a
Ecodesign option 3b (BAT Seq write workload test)	n/a	n/a
Ecodesign option 4b (BAT Ready Idle workload test)	60%	40.1
Ecodesign option 5b (BAT Total Performance Score)	63%	37.2
Ecodesign option 6b (case 5b including COMS)	46%	54.2
Ecodesign option 8b (case 6b but with higher Minimum Operating		
Condition)	45%	55.0
Ecodesign option 10b (case 8b but with good commissioning		
guidance)	44%	56.3

van holsteijn en kemna research - design - engineering

viegand

energy people

maago

41

Normalisation and points - Results

Streaming Applications (excl. top 10%)		
	EEI	Points
Reference case	100%	0
Ecodesign option 1b (BAT Hot band workload test)	n/a	n/a
Ecodesign option 2b (BAT Seq read workload test)	175%	-75.2
Ecodesign option 3b (BAT Seq write workload test)	175%	-75.2
Ecodesign option 4b (BAT Ready Idle workload test)	26%	74.1
Ecodesign option 5b (BAT Total Performance Score)	51%	48.7
Ecodesign option 6b (case 5b including COMS)	44%	56.0
Ecodesign option 8b (case 6b but with higher Minimum Operating		
Condition)	43%	56.7
Ecodesign option 10b (case 8b but with good commissioning		
guidance)	42%	58.0

van holsteijn en kemna research - design - engineering

viegand

energy people

maag

Normalisation and points - Results

Capacity Applications (excl. top 10%)		
	EEI	Points
Reference case	100%	0
Ecodesign option 1b (BAT Hot band workload test)	n/a	n/a
Ecodesign option 2b (BAT Seq read workload test)	n/a	n/a
Ecodesign option 3b (BAT Seq write workload test)	n/a	n/a
Ecodesign option 4b (BAT Ready Idle workload test)	52%	47.9
Ecodesign option 5b (BAT Total Performance Score)	52%	47.9
Ecodesign option 6b (case 5b including COMS)	36%	64.1
Ecodesign option 8b (case 6b but with higher Minimum Operating		
Condition)	35%	64.7
Ecodesign option 10b (case 8b but with good commissioning		
guidance)	34%	65.7

van holsteijn en kemna research - design - engineering

viegand

energy people

maago

43

CALCULATION GUIDE

- 1. Product performance
 - 1. SNIA Emerald / ENERGY STAR test results
 - 2. COMs: Adjust Ready Idle test
 - 3. Calculate weighted arithmetic mean
 = Prod. perf. for transactional, streaming, capacity
- 2. Product energy budget
 - 1. Inverse of the product performance = 1/prod. perf.
- 3. Total energy budget including power and cooling
 - PUE x energy budget
 PUE = 5/3 for ASHRAE 1 or 2
 PUE = 5/3 x 0.96 for ASHRAE 3 or 4
- 4. Guidance total energy budget
 - 1. Yes: Total energy = Step 3 total energy x 0.97
- 5. EEI and points
 - 1. EEI = Total energy / reference case total energy
 - 2. Points = 1- EEI

MARKET SURVEILLANCE

3 levels:

- » Technical Documentation
- » Calculate based on SNIA / ES data
- » Test the products
 - » SNIA recognised tester program
- » Good Commissioning Guidance: Subjective judgement
- » Market Surveillance is possible

van holsteijn en kemna research - design - engineering

- » Think it is possible to develop it into a real points system
- » More test data for varied selection of data storage
 using existing test methodology
- » Look more into the weightings
 with industry input and expert judgements

van holsteijn en kemna research - design - engineering

